Australian National University
2025-07-10
For i = 1, ..., E = 5, assuming observations are ordered by row then column,
\boldsymbol{y}_i = \boldsymbol{1}_{n}{\color{orange}\mu_i} + \mathbf{Z}_{g_i}\boldsymbol{u}_{g_i} + \mathbf{Z}_{b}\boldsymbol{u}_{b_i} + \boldsymbol{e}_i,\boldsymbol{y} = \begin{bmatrix}\boldsymbol{y}_1\\\boldsymbol{y}_2\\\boldsymbol{y}_3\\\boldsymbol{y}_4\\\boldsymbol{y}_5\end{bmatrix} = (\mathbf{I}_E\otimes\boldsymbol{1}_{n})\boldsymbol{\mu} + \mathbf{Z}_{ge}{\color{orange}\boldsymbol{u}_{ge}} + (\mathbf{I}_E\otimes\mathbf{Z}_b)\boldsymbol{u}_b + \boldsymbol{e}
\boldsymbol{u}_{ge}\sim N\left(\boldsymbol{0}, {\color{orange}\begin{bmatrix}\sigma^2_{g_1}\mathbf{I}_G & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0}\\\mathbf{0} & \sigma^2_{g_2}\mathbf{I}_G & \mathbf{0} & \mathbf{0} & \mathbf{0}\\\mathbf{0} & \mathbf{0} & \sigma^2_{g_3}\mathbf{I}_G & \mathbf{0} & \mathbf{0}\\\mathbf{0} & \mathbf{0} & \mathbf{0} & \sigma^2_{g_4}\mathbf{I}_G & \mathbf{0}\\\mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \sigma^2_{g_5}\mathbf{I}_G\end{bmatrix}}\right), \boldsymbol{u}_{b}\sim N\left(\boldsymbol{0}, \text{diag}(\sigma^2_{b_1}, \sigma^2_{b_2}, \sigma^2_{b_3}, \sigma^2_{b_4}, \sigma^2_{b_5})\otimes \mathbf{I}_B\right), \boldsymbol{e}\sim N\left(\boldsymbol{0}, \text{diag}(\sigma^2_{1}, \sigma^2_{2}, \sigma^2_{3}, \sigma^2_{4}, \sigma^2_{5})\otimes \mathbf{I}_n\right)
What do you notice from below?
# A tibble: 15 × 5
term estimate std.error statistic constraint
<chr> <dbl> <dbl> <dbl> <chr>
1 env:block!env_E02 0.0276 0.0415 0.666 P
2 env:block!env_E05 0.0257 0.0372 0.691 P
3 env:block!env_E07 0.000000264 NA NA B
4 env:block!env_E08 0.00691 0.0101 0.685 P
5 env:block!env_E10 0.00127 0.00207 0.611 P
6 env:gen!env_E02 0.0648 0.0303 2.14 P
7 env:gen!env_E05 0.0654 0.0140 4.66 P
8 env:gen!env_E07 0.151 0.0228 6.64 P
9 env:gen!env_E08 0.0249 0.00514 4.85 P
10 env:gen!env_E10 0.0271 0.00495 5.47 P
11 env_E02!R 0.231 0.0317 7.28 P
12 env_E05!R 0.0747 0.0105 7.09 P
13 env_E07!R 0.0781 0.0112 7.01 P
14 env_E08!R 0.0277 0.00385 7.19 P
15 env_E10!R 0.0232 0.00325 7.12 P
# A tibble: 3 × 5
term estimate std.error statistic constraint
<chr> <dbl> <dbl> <dbl> <chr>
1 block 0.0276 0.0415 0.665 P
2 gen 0.0648 0.0303 2.14 P
3 units!R 0.231 0.0317 7.28 P
# A tibble: 3 × 5
term estimate std.error statistic constraint
<chr> <dbl> <dbl> <dbl> <chr>
1 block 0.0257 0.0372 0.692 P
2 gen 0.0654 0.0140 4.66 P
3 units!R 0.0747 0.0105 7.09 P
# A tibble: 3 × 5
term estimate std.error statistic constraint
<chr> <dbl> <dbl> <dbl> <chr>
1 block 0.00000000791 NA NA B
2 gen 0.151 0.0228 6.64 P
3 units!R 0.0782 0.0112 7.01 P
# A tibble: 3 × 5
term estimate std.error statistic constraint
<chr> <dbl> <dbl> <dbl> <chr>
1 block 0.00692 0.0101 0.684 P
2 gen 0.0249 0.00514 4.85 P
3 units!R 0.0277 0.00385 7.18 P
# A tibble: 3 × 5
term estimate std.error statistic constraint
<chr> <dbl> <dbl> <dbl> <chr>
1 block 0.00127 0.00200 0.633 P
2 gen 0.0271 0.00495 5.47 P
3 units!R 0.0232 0.00326 7.11 P
\boldsymbol{y} = (\mathbf{I}_E\otimes\boldsymbol{1}_{n})\boldsymbol{\mu} + \mathbf{Z}_g{\color{orange}\boldsymbol{u}_g} + \mathbf{Z}_{ge}{\color{orange}\boldsymbol{u}_{ge}} + (\mathbf{I}_E\otimes\mathbf{Z}_b)\boldsymbol{u}_b + \boldsymbol{e}
where \boldsymbol{u}_g \sim N(\boldsymbol{0}, {\color{orange}\sigma^2_g\mathbf{I}_G}), \boldsymbol{u}_{ge} \sim N(\boldsymbol{0}, {\color{orange}\sigma^2_{ge}\mathbf{I}_{GE}}) and other random effects distributed as Approach 2.
\boldsymbol{1}_E \otimes \boldsymbol{u}_g + \boldsymbol{u}_{ge} \sim N\left(\boldsymbol{0}, \underbrace{{\color{orange}\begin{bmatrix}\small\sigma^2_g + \sigma^2_{ge} & \small\sigma^2_g & \small\sigma^2_g & \small\sigma^2_g & \small\sigma^2_g \\\small\sigma^2_g &\small\sigma^2_g + \sigma^2_{ge} &\small\sigma^2_g & \sigma^2_g & \small\sigma^2_g\\\sigma^2_g & \small\sigma^2_g &\small\sigma^2_g + \sigma^2_{ge} & \small\sigma^2_g & \small\sigma^2_g\\\small\sigma^2_g &\small \sigma^2_g &\small\sigma^2_g & \small\sigma^2_g + \sigma^2_{ge} & \small \sigma^2_g\\\small\sigma^2_g &\small\sigma^2_g & \small\sigma^2_g &\small \sigma^2_g & \small\sigma^2_g+ \sigma^2_{ge}\end{bmatrix}}}_{{\color{orange}\text{compound symmetry}}}\otimes \mathbf{I}_G \right)
\boldsymbol{y} = (\mathbf{I}_E\otimes\boldsymbol{1}_{n})\boldsymbol{\mu} + \mathbf{Z}_{ge}{\color{orange}\boldsymbol{u}_{ge}} + (\mathbf{I}_E\otimes\mathbf{Z}_b)\boldsymbol{u}_b + \boldsymbol{e}
\boldsymbol{u}_{ge}\sim N\left(\boldsymbol{0}, \underbrace{{\color{orange}\begin{bmatrix}\small\sigma^2_{g_1} & \small\sigma_{g_{12}} & \small\sigma_{g_{13}} & \small\sigma_{g_{14}} & \small\sigma_{g_{15}}\\\small\sigma_{g_{12}} & \small\sigma_{g_{2}}^2 & \small\sigma_{g_{23}} & \small\sigma_{g_{24}} & \small\sigma_{g_{25}}\\ \small\sigma_{g_{13}} & \small\sigma_{g_{23}} & \small\sigma_{g_{3}}^2 & \small\sigma_{g_{34}} & \small\sigma_{g_{35}}\\ \small\sigma_{g_{14}} & \small\sigma_{g_{24}} & \small\sigma_{g_{34}} & \small\sigma_{g_{4}}^2 & \small\sigma_{g_{45}}\\ \small\sigma_{g_{15}} & \small\sigma_{g_{25}} & \small\sigma_{g_{35}} & \small\sigma_{g_{45}} & \small\sigma_{g_{5}}^2 \end{bmatrix}}}_{\color{orange}\text{unstructured}} \otimes \mathbf{I}_G\right)
# Environment | # Parameters |
---|---|
2 | 3 |
3 | 6 |
5 | 15 |
10 | 55 |
25 | 325 |
50 | 1275 |
100 | 5050 |
E | E(E + 1)/2 |
\mathbf{G}_{e} = \begin{bmatrix}\small\sigma^2_{g_1} & \small\sigma_{g_{12}} & \small\sigma_{g_{13}} & \small\sigma_{g_{14}} & \small\sigma_{g_{15}}\\\small\color{grey}\sigma_{g_{12}} & \small\sigma_{g_{2}}^2 & \small\sigma_{g_{23}} & \small\sigma_{g_{24}} & \small\sigma_{g_{25}}\\ \color{grey}\small\sigma_{g_{13}} & \color{grey}\small\sigma_{g_{23}} & \small\sigma_{g_{3}}^2 & \small\sigma_{g_{34}} & \sigma_{g_{35}}\\ \color{grey}\small\sigma_{g_{14}} & \color{grey}\small\sigma_{g_{24}} & \color{grey}\small\sigma_{g_{34}} & \small\sigma_{g_{4}}^2 & \small\sigma_{g_{45}}\\ \color{grey}\small\sigma_{g_{15}} & \color{grey}\small\sigma_{g_{25}} & \color{grey}\small\sigma_{g_{35}} & \color{grey}\small\sigma_{g_{45}} & \small\sigma_{g_{5}}^2 \end{bmatrix}
For some order K, estimate the unstructured covariance with the factor analytic form:
\mathbf{G}_e \approx \mathbf{\Lambda}\mathbf{\Lambda}^\top + \mathbf{\Psi}
where
\mathbf{\Lambda} = \underbrace{\begin{bmatrix}\lambda_{11} & 0 & \cdots & 0\\\lambda_{21} & \lambda_{22} & \ddots &0\\\lambda_{31} & \lambda_{32} & \cdots &0\\\lambda_{41} & \lambda_{42} & \cdots &0\\\lambda_{51} & \lambda_{52} & \cdots &\lambda_{5K}\end{bmatrix}}_{\text{loading matrix (with corner constraints)}}\quad\text{and}\quad \mathbf{\Psi} = \underbrace{\begin{bmatrix}\psi_1 & 0 & 0 & 0 & 0\\0 & \psi_2 & 0 & 0& 0\\0& 0 & \psi_3 & 0 & 0\\0 & 0 &0 & \psi_4 & 0\\0 & 0& 0&0& \psi_5\end{bmatrix}}_{\text{specific variances}}.
# Env | US | FA1 | FA2 | FA3 | FA4 |
---|---|---|---|---|---|
2 | 3 | 4 | 5 | ||
3 | 6 | 6 | 8 | 9 | |
5 | 15 | 10 | 14 | 17 | 19 |
10 | 55 | 20 | 29 | 37 | 44 |
25 | 325 | 50 | 74 | 97 | 119 |
50 | 1275 | 100 | 149 | 197 | 244 |
100 | 5050 | 200 | 299 | 397 | 494 |
\boldsymbol{u}_{ge} = (\mathbf{\Lambda} \otimes \mathbf{I}_G) \boldsymbol{f} + \boldsymbol{\delta} assuming \boldsymbol{f} \sim N(\boldsymbol{0}, \mathbf{I}_{GK}) \quad\text{and}\quad\boldsymbol{\delta}\sim N(\boldsymbol{0}, \mathbf{\Psi}\otimes \mathbf{I}_G).
\boldsymbol{u}_{ge} \sim N(\boldsymbol{0}, (\mathbf{\Lambda}\mathbf{\Lambda}^\top + \mathbf{\Psi})\otimes \mathbf{I}_G).
\boldsymbol{u}_{ge} = \underbrace{(\mathbf{\Lambda} \otimes \mathbf{I}_G) \boldsymbol{f}}_{\text{G}\times\text{E Regression}} + \underbrace{\boldsymbol{\delta}}_{\text{Residual G}\times\text{E}}
Or equivalently:
Reference
Smith et al (2015) Factor analytic mixed models for the provision of grower information from national crop variety testing programs. Theor Appl Genet.