Calculate Cullis' heritability from model object
H2_Cullis.RdCompute "generalised heritability" for unbalanced experimental designs. See Cullis, Smith and Coombes (2006) for derivation.
Details
The equation for Cullis heritability is as follow
$$H^2_{Cullis} = 1 - \frac{PEV^{BLUP}_{\overline\Delta ij}}{2\sigma^2_g}$$
where:
\(PEV\) is the prediction error variance matrix of the pairwise differences among BLUPS
\(\sigma^2\) is the variance attributed to differences between genotype
References
Cullis, B. R., Smith, A. B., & Coombes, N. E. (2006). On the design of early generation variety trials with correlated data. Journal of Agricultural, Biological, and Environmental Statistics, 11(4), 381–393. https://doi.org/10.1198/108571106X154443
Examples
# lme4 model
lettuce_subset <- lettuce_phenotypes |> subset(loc == "L2")
lettuce_lme4 <- lme4::lmer(y ~ rep + (1 | gen), data = lettuce_subset)
H2_Cullis(lettuce_lme4, target = "gen")
#> [1] 0.8294971
# asreml model (Requires license)
if (FALSE) { # \dontrun{
lettuce_asreml <- asreml::asreml(fixed = y ~ rep,
random = ~ gen,
data = lettuce_subset,
trace = FALSE
)
H2_Cullis(lettuce_asreml, target = "gen")
} # }