Skip to contents

Compute "generalised heritability" for unbalanced experimental designs. See Cullis, Smith and Coombes (2006) for derivation.

Usage

H2_Cullis(model, target, options)

Arguments

model

Model object of class lmerMod/merMod or asreml

target

The name of the random effect for which heritability is to be calculated.

options

NULL by default, for internal checking of model object before calculations

Value

Numeric value

Details

The equation for Cullis heritability is as follow

$$H^2_{Cullis} = 1 - \frac{PEV^{BLUP}_{\overline\Delta ij}}{2\sigma^2_g}$$

where:

  • \(PEV\) is the prediction error variance matrix of the pairwise differences among BLUPS

  • \(\sigma^2\) is the variance attributed to differences between genotype

References

Cullis, B. R., Smith, A. B., & Coombes, N. E. (2006). On the design of early generation variety trials with correlated data. Journal of Agricultural, Biological, and Environmental Statistics, 11(4), 381–393. https://doi.org/10.1198/108571106X154443

Examples

# lme4 model
lettuce_subset <- lettuce_phenotypes |> subset(loc == "L2")
lettuce_lme4 <- lme4::lmer(y ~ rep + (1 | gen), data = lettuce_subset)
H2_Cullis(lettuce_lme4, target = "gen")
#> [1] 0.8294971

# asreml model (Requires license)
if (FALSE) { # \dontrun{
lettuce_asreml <- asreml::asreml(fixed = y ~ rep,
                                 random = ~ gen,
                                 data = lettuce_subset,
                                 trace = FALSE
                                 )

H2_Cullis(lettuce_asreml, target = "gen")
} # }